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Dispersion management and the direct scattering transform
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It is shown that the direct scattering transform may be used to derive a perturbative theory of quasiperiodic
field propagation in nonlinear fiber lines managed through zero-average, piecewise-constant dispersion maps.
In this scheme, the field is propagated exactly and it is the quasiperiodicity property which is approximated.
The resulting quasiperiodicity conditions are shown to agree with the dispersion managed nonlinear Schro
dinger equation up to order 4.
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|. INTRODUCTION Il. THE SCATTERING TRANSFORM
. A. Definitions
A great deal of effort has recently been dedicated to the
study of field propagation in long-haul fiber lines. In such ~ Consider the X2 Ablowitz-Kaup-Newell-SegufAKNS)
fibers, the transmission over long distances forces one th€ar problem for the scattering of a two-component field
treat the nonlinearity and the pulse evolution turns out to be&(Z 7) by a pair of potentialg|(z,7) andv(z,7)

governed by the nonlinear Scldinger equatior{NLS), —iN g
. X= . : 2
X ( v IA)X (28)
au d%u . .
i——é—+K|U|2U:0, (1) 2] !
dz 2 972 —IA —EqU AQ+ EaTq
Ix=P i i X (2b)
i\ 2
JEE— + —
wherez is the distance along the fiber,s the retarded time, A 2 v Ih 2 v
B is the dispersion coefficienty is the nonlinearity, and
u(z,7) is the slowly varying field envelope. The first step in the study of this linear problem is to con-

In the past few years, dispersion managen@l) has  siderz fixed and focus on the scattering equati@a). As-
arisen as the most promising technique for minimizing specSuming the potentials to be localized 1 it is possible to
tral broadening, timing jittef1—3], and crosstal{4,5] in  define four solutions to Eq2a according to their asymp-
such systems. Up to very recently, the analytical descriptioﬁoucal behaviors at infinity. Consider then the e|genfunctlons
of DM had been achieved mainly through three approachegy- and ¢_, behaving, respectively, asg)e '™ and
an averaging methdd], a regular perturbation theofy,8], (°,)e for 7— —o=, as well as the eigenfunction, and
and a multiple scales analy$8]. These methods express the ¢ , behaving as(l)o e and é)e““ for 7— +o0. In terms
periodicity condition on the field as a nonlinear integral con-of these solutions and of the WronskiaW(x, &)= x1&»
straint, known as the DMNLS. However, these formalisms— x»&;, scattering coefficients may be defined according to
also have the drawback of evolving the field in approximate

ways. The present goal is to study DM using an exact field a(N)=W(¢-,¢,), (33
propagation, for the experimentally interesting case of a
piecewise-constant dispersion profile. This idea has already a\N)=W(y_ i), (3b)
been tackled by a few authof$0,11], but the integral peri-
odicity conditions arising from such an approach have never b(N)=—W(d_ i), (30
actually been identified.

To this end, a review of the scattering transform will first bO)=W(¢_,b.). 3d)

be presented, the focus being set on aspects which are perti-

nent to the DM problem, and the main goal being to expose\ssyming the potentials to vanish faster than any algebraic
the notation subsequently used; the reader is referred to Refg;nction

[12,13 for more detailed treatments. The direct scattering

transform will then be used to devise a perturbation scheme " r(r)

for quasiperiodic field propagation and the result will be f dr| T|"( )<oo (V neN) (4)
compared with the DMNLS description. - q(7)

implies thata(\), E()\) are, respectively, analytic in the up-
*Electronic address: yxudous@phy.ulaval.ca per and lower halves of the complaxplane, including the
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real axis. It can also be shown that E4) impliesb(\) and  satisfies the same scattering equatioryds = space. Exam-

b(\) to be analytic on the real axis. ining the asymptotic behavior of these transformed solutions,
Now for generic potentials, the AKNS system will pos- one finds that

sess a continuous spectrum of unbounded eigenfunctions for ~

A=keR as well as a discrete set of bounded ones Nor d-(\, )=t (\,7), (113

=N\ce A and)\=fkex. Here,A and A denote the sets of

zeros ofa(\) anda(\), which reside, respectively, in the Y- =P (N7, (119
upper and lower halves of the complexplane. The scatter- ~ _
ing data of the potentialg andv may then be defined in b+, 1) =P (N, 7), (119
terms of these spectra as the set ~
P BT = b (7). (11d)
S[a,v]={A,A,b(\),b(N)}, (5 Using these identifications in the Wronskian formula it
o can be shown that simultaneous parity and NLS symmetries
where it is understood thate RUAUA. imply
A link between these scattering data and the NLS may be
established by noticing that for any continuggo solve Eq. Re{A}=0, (123
(2), the potentials must satisfy the compatibility conditions
b(N)=Pb(—N\). (12b
8,0 — %Baiq.q_iﬂqZU:O’ (6a)  The last symmetry constraints that will be used were also

obtained in Ref[10], and they relate two different scattering
problems. Consider an unprimed AKNS syst&with po-
tential u and a primed syster8’ with potentialu’ =u*e'?.
One can show that if solvesS, then the transformed fieigl
given by

i
A+ E,B(?Ev—iﬂqu=0. (6b)

An identification of these with Eq1) can thus be achieved

by parametrizing the potentials in terms of the NLS field ;(1 X2(—N\,7)
u(z,7) according to <, =l oeiyy(—n,7) (13
q(z7)=ioau®(z,7), (78 solvesS’. The asymptotics then lead to the identifications
v(z,7)=iau(z,1), (7b) b_(\,7)=—c€ 'Y (\,7), (149
wherea= \|«/B| ando=sgn(— /). Y-\, T)=— (\,7), (14b)
B. Symmetries and scattering data '(7;_,_()\,7-): U (N,7), (140
It is well known that specific symmetries of the potentials - o
can drastically constrain the scattering data. For example, P\, 7)=0€ P\ (\,7), (140
under the NLS symmetr{7), half of the data become redun- _ .
dant, and the Wronskian formulas imply
— I\ %
Ne=AE 8a) ANe=—N\g, (153
_ b’(N\)=—¢'’b*(—\*). (15b)
b(N)=ab*(\*), (8b)
This result will play an important role in the subsequent
and the scattering transform may be truncated to analysis.
Slul={A,b(N)}, 9 C. Direct and inverse scattering

The problem of computing the scattering data correspond-
ing to a given potentiali(7) is referred to as the direct scat-
tering problem. This can be achieved by solving Ezg) in
the integral form

where A e RUA. Another symmetry which will be put to
good use is that of parity. Following R€f10], suppose that
u(z,7)="Pu(z,—7), with P==1. Then the transformed
field y defined as

2

gl(r,x)zl—aasz dTlfrl dru* (1)U(7)

( Xl(_)\i_T) ) (10)

—Pxo—=N\,—17) X e2Mn=m)r (7, \), (163
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r lu.l

{2(7,)\)=iaJ dru(ry)e 21

T T ¢ -2 3
—Gazf drlj d7ou* (1o)u(7y) k2
Y ( ey ( gy ()
XeZiA(Tz—Tl)gz(Tz,)\) (16b 5 =T s
. . f 1/2
for the functions defined byZ,(7,\)=(¢_),€*" and T
Lo(1,\)=(¢_),e ™. The evaluation of the Wronskian for- 13wl
mulas at infinity then allows one to construct the data o _ _
through FIG. 1. Boundary scaling in a two-step dispersion map.
lim ¢;(7,M) =0, (179  and u;(z;,7) being scaled to the junction-field amplitude
700 Ag, with the scaled dispersion and nonlinearity, respectively,
given by
b(N)=lim £5(7,N). (17b
T—00 B’.’€.
Bi=—5 (2D)
Conversely, the problem of constructing a potentiék), Ts
given its scattering data, is well defined and is referred to as 5
the inverse scattering problem kj=7vAgl;. (22)
ST{A,b(M)}]=u(7r) (AeRUA). (18)  This choice of scaling is depicted in Fig. 1.

The propagation through one map period can then be con-
This may be achieved by solving a linear integral conditionsidered as a sequential process, where the field is evolved
known as the Marchenko equatiph2,13. The knowledge according to two separate NLS systems, continuity being ex-
of the scattering data is thus strictly equivalent to that of theplicitly enforced at the boundary
field. Finally, it should be emphasized that both the direct
and inverse problems are considered at a fixed valuzeaofi us(1,7)=uz(0,7)=ug(7). 23
therefore pertain only to the first hatta) of the AKNS sys- ) L . . )
tem. The usefulness of transforming back and forth betweelf? Order to describe quasiperiodic solutions to this system, it
the potential and its scattering data is due to the simple evdnUst Pe required that the field acquire at most a constant

lution of latter inz space phase¢ after having propagated through one map period.
One way to achieve this is to impose a quasiconjugate propa-
Md(2)=N(20), (199  9ation scheme in each fibgs]
. ui(1,7)=u?(0,7)e'%. 24
b(z,\)=b(zy,\)€2AZ 200", (19b) i(hm) =y (0. (29

. . When coupled to the boundary conditi(28), this gives rise
One can then solve for the evolution of the NLS field fragn quasiperiodic behavior with a phase skifc 6,— ;. Ac-

to z by transforming to the scattering datazt evolving  ¢ording to Eq.(15), the scattering data at the fiber extremi-
these toz and then taking the inverse transform to recoveriag gre then simply related by

the field.
Aj(1)=—Xg;(0), (2539
IIl. THE DM SOLITON
A. Quasiperiodicity and scattering data bj(1n)=—¢ "ij*(o,—)\*)_ (25D
Consider now applying the spectral methods of the preBut since Eq.(19a implies the discrete eigenvalues to be
ceding section to a cascaded fiber-line system with a twoconstant througlz;, half of these constraints reduce X{;
step piecewise-constant dispersion map, wherejtindiber = — ), . which is simply the discrete spectrum parity con-
leg (j =1,2) is characterized by its length, second-order dition (12g. The condition(25a may therefore be satisfied
dispersion8{, and nonlinearityy. The evolution of the simply by requiring the field to have a definite parity. Ac-
pulse in each leg is governed by the NLS cording to Eq.(129, the discrete eigenvalues may thus be
parametrized aky ;=i j, With wy; e R". Following Ref.
[10], the parabolic evolutiol9b) of b;(z; ,\) from z;=0 to
z;=1 may then be combined with the quasiconjugate condi-
tion (25b) and the parity conditioril2b) to yield

au; B é°u;
| J J 2 —
&_Zj_iﬁ—i_l(ﬂu” Uj—o. (20)

Here, the variables and field are dimensionlegspeing . @8
scaled tof;, 7 being scaled to the junction-field widf, b;(ON)=—Pb (ON)e™ AN, (26)
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Introducing the complex parametrization
b;(ON)=f;(N)e'i™) (27)

with Im[f;(\)]=Im[;(N\)]=0, and using the fact that
€ R even for the discrete pointg j=iu, ; gives
f;(N)=Pf;(—=N\), (289

™

0.
wj(x)z—ﬁjx2+§’+4(7>+1) (modm). (29

Absorbing the mod factor in the unknowrf;(\), b;(z;,\)
is seen to be parabolically chirped according to

bj(zj,\)= fj()\)ei{ﬁj(2zj—1)x2+ 612+ (mla)(P+1)} (30)

B. Direct scattering perturbation scheme

The parametrization30), together with the parity as-
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0= 2 0af, (34b)

where the coefficientl’;j(“)()\) and 6}“) are real. Substituting
these expansions in E¢30) then yields

o

i ()
bi(z, ,)\)zel{ﬁj(zzj—l)x2+(1/2)9j +(w/4)(7)+1)}r20 c](”)(k)a?,

(35
where the expansion coefficients are given by

cPn)=FP ()

p-1 * in
PRSP )
m=0 n=1 2™nl ry...r=1

p>1
2 arermep

[

n
H 0_(r() .
=1 !

(36)

sumption, translates all the information about the quasicon-
jugate propagation schen(24) onto the scattering data, and The proposed approach is to consider an unspecified field
the problem has now been reduced to finding which phasq;B(k) at the boundary and use E@1) to construct its scat-

6; and modulif;(\) also satisfy the boundary conditi¢23).

tering data in each fiber, up to ordsin «;. Imposing these

It will now be shown that it is possible to treat this problem y5¢5to be of the quasiconjugate fof@%) order by order will

in perturbation theory. The direct scattering transform is well
suited to such a task because infinitely iterating the integr

scattering problem(16b) and using Eq.(17b) yields the
power series

bi(zj N)= 2, i 1o P Nz, 20) 0", (3D)
n=1

where the following functionals afi have been defined:

on-1 .

b](2n—l)(zj A= H { f deei()r}\Tr]
r=1 —o

2n-2 n

X 61;[1 {9(7'(_7'(“)}”1_[ 1Uj(z5, 7om-1)}

=1

n-1
o 1 RUACEN (32b)
and wheref(x—y) is the unit step function
0 if x<y,
Ox=y)= 1 if x>vy. 33

On the other hand, perturbation expansions for the modulu

and phase ob;(z;,\) may be introduced in the form

fjo\)znzo fO(N\)af, (343

a

tlhen yield the conditions fcfuB(k) to exhibitNth order qua-
siperiodic behavior around;=0.
This program is not too difficult to realize for=ke R,
but there is a subtlety associated with the discrete spectrum
because the eigenvalugg ; depend orw;, and this implicit
dependence should also be considered before the expansion
(31) is evaluated on the imaginary axis and employed in any
perturbation scheme. Unfortunately, this information is diffi-
cult to incorporate since there is no simple way of obtaining
an expansion foru ;(a;) without the exact analytical
knowledge of the boundary field. This problem will be side-
stepped by simply requiring the field to be purely radiative,
i.e., it is required that\;=(J. This is not as restrictive as it
may seem because the scaling depicted in Fig. 1 implies the
coefficientsb{*"~)(z;,2\) to be roughly of order one at the
boundary and so the validity of any low-order truncation of
Eq. (31) requiresa;<1, which is equivalent to
|B]|=7|AETE. (37)
On the other hand, there can be no discrete spectrum in any
normal fiber and it can be showi2] that a necessary and
sufficient condition for the absence of a discrete spectrum in
any anomalous fiber is given by

In(2+/3)
a; '

J

fjw|Uj(Zj,T)|dT< (38)

Rlow our choice of scaling also implies this quadrature to be
of order 1 at the boundary and #; is small, the bound
becomes large so that any field profile will be purely radia-

tive in the perturbation regim@7). Restricting the perturba-
tive analysis to the real axis, the Fourier-transformed field
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Uj(z, ,k)Ef:dTe“kTuj(zj 7, (39

and the integral representation for the unit step function

ox—y)= | 9P [ gsdrtx-y-9 (40)
x=y)=| 5], 9s ,

may be invoked to reduce the scattering coeffici¢B& to
the form

b®(z; k) =u;(z k), (41a

2n—-2

(2n-1)7 )= SLLNCET
b~ (z; k) r1;[l |J0drrf_w277e
n-1

XUj(z ,p1+k>€[[1{&r<z,- \Po¢—1t PaetK)}

n-2
Xrgl {aj(zj P2mt Pom+ 1K)}
n>2
XUj(2),p2n-21 k). (41b)

Equating the quasiconjugate conditi@®6) with the scatter-
ing expansion(31) at the junction then gives

z i2n710_;1—1b|(32n—1)(2k) aj2n—1
n=1

©

— ai{(-1)1718:k2+ (1/2) 600+ (mia) (P+ 1)} (n) n
e ] ] ™ n§=“0 CJ (k)aJ f

(42)
where the boundary coefficients are defined by

b H(2k)=bP" (1,20 =" D(0,%). (43

C. Low-order perturbative analysis

Equation(42) is the starting point for the proposed per-

turbative analysis. At ordes?, it implies f{”(k)=f{”(k)

=0. This result seems to imply that the only possibility for

linear quasiperiodicity is the trivial solutiomg(k) =0, but it

is well known that any linear pulse profile is exactly periodic
for a zero-average dispersion map. This discrepancy is due to

PHYSICAL REVIEW E 69, 036609 (2004

which are compatible only if

B1=—B2=p, (459
0= o= 90, (45b)
f(D(k)=fP=tD (k). (450)

Now the direct scattering problem shows tt#¢) may be
arbitrarily shifted by simply gauging the global phase of
ug(k) so fixing this gauge according te®)=—7/2(P
—1), the specific form of the scattering transform coeffi-
cients(41a implies the junction field to be given by

k) NEDLS (46)

U =f(1) =
(k) =1 5

Compared to the linear case, first-order quasiperiodicity
arounda;=0 still requires the average dispersion to vanish
and still allows for an infinity of solutions, but it now singles
out those junction profiles which have a specific parabolic
chirp in Fourier-space. The resuy#6) may then be used to
explicitly separate the scattering coefficients into real and
imaginary parts according to

Re[bE"1(2k)} = cos BCKA)I " D(k)
+sin(BekHIP"V(k), (479
Im{b&"~1)(2k)}=sin(B¢k?)I 2"~ D(k)
—cog BLk3)IE" k),  (47b

with the introduction of the quantitigd.8] 1(*)(k)=0,

2n—2

(2n—1) () — 92n—2 UPNICDLE
12 0 =272 [T |f0drrf_m27e }
2n—3
xsin > (—1)S+12ﬁ€psps+1)f(“(pﬁk)
s=1
2n—3

X L[l {FD(pe+pesat KB (pyy_o+k),

(483
and 1 (M (k)=fM(k),

2n—2

the fact that the scattering formalism is strictly not related to @01y = 202 [ fwdfr J»oo %ei(*l)rﬂpr
the NLS ata;=0. Indeed, in order to obtain the NLS equa- ¢ ] o J-x2m

tion from the compatibility conditior{6), one has to divide

the latter bya so the correspondence breaks down at the e ai1 1)
linear point and the zeroth-order constraint is actually not Xco 521 (=1)>772B€psPs+1 | T (P11 k)
related to linear quasiperiodicity. Proceeding then to first or-

der, the conditions take the form

ib(®(2k) = fJ(l)(k)ei{(—l)j’lﬁij-F 6012+ (i) (P+ 1)}
(44)

2n-3
< 1 Aot e s+ 0} Dpan o1 K).

(48b

036609-5



Y. XUDOUS PHYSICAL REVIEW E 69, 036609 (2004

Proceeding now to second order, the fact it and = dp |dp||dq|

fiM(k) are real can be invoked to obtafff’(k) = 6" =0. \JJ Eez'th(S,k,p)‘<J ——— |[fB(k+p)]

Using this second-order result, the third-order equations may =~ - (2m)?

be written as x| fD(k+p+q)|[fH(g+k)].
(57)

i _
—ib@(2k) = o| FB(K)+ 5 0P (k) |1, (49)
B i\ 27 N , N
Now energy conservation in the anomalous fiber implies
|b(k)|=<1 sof®(k) is known to be bounded. Assuming also

and subtracting these in both fibers gives ug(7) to vanish faster than any algebraic function implies
f(H(k) to be analytic on the real axis, and the right-hand side
a1f (k) = o, f (k) =1C)(k), (508 of Eq. (57) is thus seen to converge to some finite value.
Since this bound is also independentaindt, the left-hand
019(12): oy 9(22)5 92 (50b) side is seen to be uniformly convergent with respect to these

variables. Interchanging then thendp integrals and inte-

Separating the third-order systef9) into real and imagi- gratingl {¥(k) overt gives
nary parts and substituting the resul’g and (47b) then

- = (=dp| . G(skp)
gives 3k = el 2i
17 (k) 4]0 dsfmzw[tlme tp i
P
[F®(k)+1P(k) Jsin(gek?) = | 1(k) — f<1>(k)) G(s,k,p)] 59
- —2ip [°
x coq BLk?), (51a
o Now since|sin(28gp)/p| can be bounded bj23q|, one has
02
[k +18(k) Jcos BEK?) = Tf(l)(k)—lf')(k)) f 2 OS] |f LLICE
) ,x27-r 2ip (2w )2
X sin( Bk?), (51b)
X[f B (k+p)|[fD(k+p+0q)|
which are compatible only if
X |[fD(q+Kk)|. (59
@) =-18(k), (52)

If f(I(k) is now assumed to decay fast enougliés-, so
42 that the right.-hand side of E¢G9) is_ finite, its left-hand sjde
|g3)(k): @), (53) becomes ymformly convergent_wnh respectstandt. It is
2 thus possible to take the limit in the first term of E§8)
outside thep integral and this term becomes proportional to
The second of these expressions represents a nontrivial coa-Fourier transform evaluated at infinity
straint for the determination of the junction-field modulus
f1)(k/2) and the second-order phase shift®= g lim J'w dpefi(Zt)pG(S’k'p) (60)
—6{?). Indeed, since the nonlinearity in both fibers is the o p
same but the dispersions alternate in §igge Eq(453], one
has o;=—0, so that 6 is actually given by #?  whereG(s,k,p)/p has already been shown to be integrable
=(0,/2)¢. In order to simplify this constraint, one may by Eq. (59). Now the Riemann-Lebesgue lemma states that

write 1 )(k) in the form the Fourier transform of any Riemann-integrable function

vanishes at- . This limit may thus be eliminated and there

_ remains
©00-a ds| “ar f e 2PG(sk,p), (54
= d H(k
1®(k)= 4f f 99 aisq AP0 (61)
02 _x27T 2ip

where

. A reasoning similar to that above then allows one to inter-
G(sk p)Ef _quiqu(k’p’q)’ (55) change the; and q integrals, integrate oves and use once
—w2T more the Riemann-Lebesgue lemma to yield

=qj (1) (1) (1) » dpdq sin(2
H(k,p,a)=sin(28pa) fM(k+p) D (k+p+q)fH(q+k). Igg)(k):f pdg sin( ﬁpq)f(l)(k+p)
(56) —= (2m?2  Pq
The integral ovep can then obviously be bounded by X fO(k+p+q)fP(q+k). (62

036609-6



DISPERSION MANAGEMENT AND THE DIREQ . .. PHYSICAL REVIEW E 69, 036609 (2004

Using this simplification[19], the integral constrain{53) (2) p(2)

may finally be written as COS(,@kz)( fO) (k) —

f<1><k>—l£5><k))
. (2) (4)
2¢(2)f(1)(k)= f‘” dpdg sin(28pQ) f(l)(k-l-p) =sin(,8k2)(|g5’(k)— 07'5:3)(k)+ %f(l)(k))’
4 -=(2m)2  Pq
66
X fO(k+p+q)fP(g+Kk). (63) (669

(2) (@)

This is exactly the quasiperiodicity condition arising from sin(,6’k2)<f(5)(k)— 0

the zero-average dispersion DMNIL§,9,14 and its numer-

ics have already been shown to support even and odd solu- o2 @)

tions, whose power spectra exhibit respectively one and two __ 216y 2 (3) Y

exponential hump§9,15]. cos Bk )( 17k 2 1o+ 2 f (k)>’
It should be emphasized that in other perturbative models, (66)

the physical interpretation of the DMNLS is not always as

clear as in the present context. For example, in the regular

perturbative approacf8], the unknown function satisfying which are compatible provided that

the DMNLS is found to be the field modulus at the fiber

midpoint |U;(1/2Kk)|, which may only be identified with

f()(k/2) if the field is assumed to propagate at order &jn

between the fiber midpoint and the junction. This is clearly

less precise than the presermﬁ treatment. The multiscale

analysis also lacks some precision, since its solution to the

DMNLS represents the asymptotic field envelope for a slow s 9@ 5 o

zscale. In contrast, by lifting small scale assumptions on the 1®)(k) — 7'& k)=~ Tf(l)(k)- (68)

fiber lengths and propagating the field exactly, the present

procedure can identify the solution to the DMNLS very pre-

f<1><k>—|g5>(k))

(2)(2)

fO(k) =15 (k) + i fW(k), (67)

cisely as the field modulus at the junction. Itis also trivial to see that at order &% (k) = 6{*)=0 so that
any functionfM(k) satisfying simultaneously Eq&3) and
D. Higher-order perturbative analysis (68) would represent a solution that is quasiperiodic up to

order 6. However, since E¢8) does not have the form of a
correction but represents a whole new constraint, the exis-
. . . : tence of such high-order solutions is rather unlikely. Note
gg? ct)? EggG?ltg]aﬁgisrgre'?fg So%sg;teo'r[]r?ew'trzseﬁr?:rrwljjrlg- also that higher-order DM solitons obtained through the mul-
X . P L P P ... tiple scales analysis not only depend on the scaled dispersion
tion with this correction, let us proceed to order 4, where it ISIB but also on the explicit ratio of, to €,. Since Eq.(68)
B(Kky= B = i i _ P ) o L e

seen thatf;"(k)=g;"'=0. This and_ the previous lower only depends on the dispersion, it is necessarily different
order results then allow one to write the fifth-order CON-¢ .0/ the HODMNLS and therefore does not describe higher-
straints order solitons. This lack of concordance at high orders is to

i be expected since the two approaches are not equivalent, the
fJ(5)(k)+ _9](2)f1(3)(k) multiple scales analysis requiring a robustness of its solu-

2 tions with respect to perturbations of the small map period
€1+ €,, whereas the present perturbation parameter; is

Ablowitz et al. have also succeeded in deriving the
higher-order DMNLS(HODMNLS), a higher-order correc-

b$)(2k) =

(2) g(2) .
0" — %) f(l)(k)} e’ (64)

*132

IV. CONCLUSION
Substituting now f{¥(k)= - o1 P(k), 6=0,6® and

subtracting these equations in both fibers gives An approach to the study of dispersion management has

been presented, where the field is exactly propagated and the
quasiperiodicity property is approximated in perturbation
(k) =12 (k) =1®)(k), (658  theory. This approach actually hunts down those solutions to
the linear DM problem which remain quasiperiodic when the
nonlinearity is turned on and varied up to order 4. These
robust quasiperiodic fields have been shown to correspond
with the solutions of the lowest-order DMNLS, to be purely

In terms of these quantities and Ed473a and (47b), the  radiative, and to exist only for zero-average dispersion maps.
fifth-order system separates into real and imaginary parts addowever, it is well known that quasiperiodic fields also exist
cording to in the case of nonzero residual dispersjad]. These solu-

9= 65N= 0. (65b)
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