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Dispersion management and the direct scattering transform

Y. Xudous*
Centre d’Optique, Photonique et Laser (COPL), De´partement de Physique, Universite´ Laval, Québec (Que´bec), Canada G1K 7P4

~Received 12 November 2003; published 30 March 2004!

It is shown that the direct scattering transform may be used to derive a perturbative theory of quasiperiodic
field propagation in nonlinear fiber lines managed through zero-average, piecewise-constant dispersion maps.
In this scheme, the field is propagated exactly and it is the quasiperiodicity property which is approximated.
The resulting quasiperiodicity conditions are shown to agree with the dispersion managed nonlinear Schro¨-
dinger equation up to order 4.
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I. INTRODUCTION

A great deal of effort has recently been dedicated to
study of field propagation in long-haul fiber lines. In su
fibers, the transmission over long distances forces one
treat the nonlinearity and the pulse evolution turns out to
governed by the nonlinear Schro¨dinger equation~NLS!,

i
]u

]z
2

b

2

]2u

]t2
1kuuu2u50, ~1!

wherez is the distance along the fiber,t is the retarded time
b is the dispersion coefficient,k is the nonlinearity, and
u(z,t) is the slowly varying field envelope.

In the past few years, dispersion management~DM! has
arisen as the most promising technique for minimizing sp
tral broadening, timing jitter@1–3#, and crosstalk@4,5# in
such systems. Up to very recently, the analytical descrip
of DM had been achieved mainly through three approach
an averaging method@6#, a regular perturbation theory@7,8#,
and a multiple scales analysis@9#. These methods express th
periodicity condition on the field as a nonlinear integral co
straint, known as the DMNLS. However, these formalis
also have the drawback of evolving the field in approxim
ways. The present goal is to study DM using an exact fi
propagation, for the experimentally interesting case o
piecewise-constant dispersion profile. This idea has alre
been tackled by a few authors@10,11#, but the integral peri-
odicity conditions arising from such an approach have ne
actually been identified.

To this end, a review of the scattering transform will fir
be presented, the focus being set on aspects which are p
nent to the DM problem, and the main goal being to exp
the notation subsequently used; the reader is referred to R
@12,13# for more detailed treatments. The direct scatter
transform will then be used to devise a perturbation sche
for quasiperiodic field propagation and the result will
compared with the DMNLS description.

*Electronic address: yxudous@phy.ulaval.ca
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II. THE SCATTERING TRANSFORM

A. Definitions

Consider the 232 Ablowitz-Kaup-Newell-Segur~AKNS!
linear problem for the scattering of a two-component fie
x(z,t) by a pair of potentialsq(z,t) andv(z,t)

]tx5S 2 il q

v il D x, ~2a!

]zx5bS 2 il22
i

2
qv lq1

i

2
]tq

lv2
i

2
]tv il21

i

2
qv
D x. ~2b!

The first step in the study of this linear problem is to co
sider z fixed and focus on the scattering equation~2a!. As-
suming the potentials to be localized int, it is possible to
define four solutions to Eq.~2a! according to their asymp
totical behaviors at infinity. Consider then the eigenfunctio

c2 and f2 , behaving, respectively, as (0
1)e2 ilt and

(21
0 )eilt for t→2`, as well as the eigenfunctionsf1 and

c1 , behaving as (1
0)eilt and (0

1)e2 ilt for t→1`. In terms
of these solutions and of the Wronskian,W(x,j)[x1j2
2x2j1, scattering coefficients may be defined according

a~l!5W~f2 ,f1!, ~3a!

ā~l!5W~c2 ,c1!, ~3b!

b~l!52W~f2 ,c1!, ~3c!

b̄~l!5W~c2 ,f1!. ~3d!

Assuming the potentials to vanish faster than any algeb
function

E
2`

`

dtutunS r ~t!

q~t!
D ,` ~; nPN! ~4!

implies thata(l), ā(l) are, respectively, analytic in the up
per and lower halves of the complexl plane, including the
©2004 The American Physical Society09-1
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real axis. It can also be shown that Eq.~4! impliesb(l) and
b̄(l) to be analytic on the real axis.

Now for generic potentials, the AKNS system will po
sess a continuous spectrum of unbounded eigenfunction
l5kPR as well as a discrete set of bounded ones fol

5lkPL andl5l̄kPL̄. Here,L and L̄ denote the sets o
zeros ofa(l) and ā(l), which reside, respectively, in th
upper and lower halves of the complexl plane. The scatter
ing data of the potentialsq and v may then be defined in
terms of these spectra as the set

S @q,v#[$L,L̄,b~l!,b̄~l!%, ~5!

where it is understood thatlPRøLøL̄.
A link between these scattering data and the NLS may

established by noticing that for any continuousx to solve Eq.
~2!, the potentials must satisfy the compatibility condition

]zq2
i

2
b]t

2q1 ibq2v50, ~6a!

]zv1
i

2
b]t

2v2 ibqv250. ~6b!

An identification of these with Eq.~1! can thus be achieve
by parametrizing the potentials in terms of the NLS fie
u(z,t) according to

q~z,t!5 isau* ~z,t!, ~7a!

v~z,t!5 iau~z,t!, ~7b!

wherea[Auk/bu ands[sgn(2k/b).

B. Symmetries and scattering data

It is well known that specific symmetries of the potentia
can drastically constrain the scattering data. For exam
under the NLS symmetry~7!, half of the data become redun
dant,

l̄k5lk* , ~8a!

b̄~l!5sb* ~l* !, ~8b!

and the scattering transform may be truncated to

S@u#5$L,b~l!%, ~9!

where lPRøL. Another symmetry which will be put to
good use is that of parity. Following Ref.@10#, suppose that
u(z,t)5Pu(z,2t), with P561. Then the transformed
field x̃ defined as

S x̃1

x̃2
D [S x1~2l,2t!

2Px2~2l,2t!
D ~10!
03660
for

e

e,

satisfies the same scattering equation asx in t space. Exam-
ining the asymptotic behavior of these transformed solutio
one finds that

f̃À~l,t!5c1~l,t!, ~11a!

c̃À~l,t!5Pf1~l,t!, ~11b!

f̃¿~l,t!5Pc2~l,t!, ~11c!

c̃¿~l,t!5f2~l,t!. ~11d!

Using these identifications in the Wronskian formulas~3!, it
can be shown that simultaneous parity and NLS symmet
imply

Re$lk%50, ~12a!

b~l!5Pb~2l!. ~12b!

The last symmetry constraints that will be used were a
obtained in Ref.@10#, and they relate two different scatterin
problems. Consider an unprimed AKNS systemS with po-
tential u and a primed systemS8 with potentialu85u* eiu.
One can show that ifx solvesS, then the transformed fieldx̃
given by

S x̃1

x̃2
D [S x2~2l,t!

seiux1~2l,t!
D ~13!

solvesS8. The asymptotics then lead to the identifications

f̃À~l,t!52seiuc28 ~l,t!, ~14a!

c̃À~l,t!52f28 ~l,t!, ~14b!

f̃¿~l,t!5c18 ~l,t!, ~14c!

c̃¿~l,t!5seiuf18 ~l,t!, ~14d!

and the Wronskian formulas imply

lk852lk* , ~15a!

b8~l!52eiub* ~2l* !. ~15b!

This result will play an important role in the subseque
analysis.

C. Direct and inverse scattering

The problem of computing the scattering data correspo
ing to a given potentialu(t) is referred to as the direct sca
tering problem. This can be achieved by solving Eq.~2a! in
the integral form

z1~t,l!512sa2E
2`

t

dt1E
2`

t1
dt2u* ~t1!u~t2!

3e2il(t12t2)z1~t2 ,l!, ~16a!
9-2
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z2~t,l!5 iaE
2`

t

dt1u~t1!e22ilt1

2sa2E
2`

t

dt1E
2`

t1
dt2u* ~t2!u~t1!

3e2il(t22t1)z2~t2 ,l! ~16b!

for the functions defined byz1(t,l)[(f2)1eilt and
z2(t,l)[(f2)2e2 ilt. The evaluation of the Wronskian for
mulas at infinity then allows one to construct the da
through

lim
t→`

z1~t,lk!50, ~17a!

b~l!5 lim
t→`

z2~t,l!. ~17b!

Conversely, the problem of constructing a potentialu(t),
given its scattering data, is well defined and is referred to
the inverse scattering problem

S21@$L,b~l!%#5u~t! ~lPRøL!. ~18!

This may be achieved by solving a linear integral condit
known as the Marchenko equation@12,13#. The knowledge
of the scattering data is thus strictly equivalent to that of
field. Finally, it should be emphasized that both the dir
and inverse problems are considered at a fixed value ofz and
therefore pertain only to the first half~2a! of the AKNS sys-
tem. The usefulness of transforming back and forth betw
the potential and its scattering data is due to the simple e
lution of latter inz space

lk~z!5lk~z0!, ~19a!

b~z,l!5b~z0 ,l!e2ib(z2z0)l2
. ~19b!

One can then solve for the evolution of the NLS field fromz0
to z by transforming to the scattering data atz0, evolving
these toz and then taking the inverse transform to recov
the field.

III. THE DM SOLITON

A. Quasiperiodicity and scattering data

Consider now applying the spectral methods of the p
ceding section to a cascaded fiber-line system with a t
step piecewise-constant dispersion map, where thej th fiber
leg (j 51,2) is characterized by its length, j , second-order
dispersionb j9 , and nonlinearityg. The evolution of the
pulse in each leg is governed by the NLS

i
]uj

]zj
2

b j

2

]2uj

]t2
1k j uuj u2uj50. ~20!

Here, the variables and field are dimensionless,zj being
scaled to, j , t being scaled to the junction-field widthTB ,
03660
s

e
t

n
o-
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-
-

and uj (zj ,t) being scaled to the junction-field amplitud
AB , with the scaled dispersion and nonlinearity, respective
given by

b j[
b j9, j

TB
2

, ~21!

k j[gAB
2, j . ~22!

This choice of scaling is depicted in Fig. 1.
The propagation through one map period can then be c

sidered as a sequential process, where the field is evo
according to two separate NLS systems, continuity being
plicitly enforced at the boundary

u1~1,t!5u2~0,t![uB~t!. ~23!

In order to describe quasiperiodic solutions to this system
must be required that the field acquire at most a cons
phasef after having propagated through one map peri
One way to achieve this is to impose a quasiconjugate pro
gation scheme in each fiber@8#

uj~1,t!5uj* ~0,t!eiu j . ~24!

When coupled to the boundary condition~23!, this gives rise
to quasiperiodic behavior with a phase shiftf5u22u1. Ac-
cording to Eq.~15!, the scattering data at the fiber extrem
ties are then simply related by

lk, j~1!52lk, j* ~0!, ~25a!

bj~1,l!52eiu jbj* ~0,2l* !. ~25b!

But since Eq.~19a! implies the discrete eigenvalues to b
constant throughzj , half of these constraints reduce tolk, j*
52lk, j , which is simply the discrete spectrum parity co
dition ~12a!. The condition~25a! may therefore be satisfie
simply by requiring the field to have a definite parity. A
cording to Eq.~12a!, the discrete eigenvalues may thus
parametrized aslk, j5 imk, j , with mk, jPR1. Following Ref.
@10#, the parabolic evolution~19b! of bj (zj ,l) from zj50 to
zj51 may then be combined with the quasiconjugate con
tion ~25b! and the parity condition~12b! to yield

bj~0,l!52Pbj* ~0,l!e2 i (2b jl
22u j ). ~26!

FIG. 1. Boundary scaling in a two-step dispersion map.
9-3
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Introducing the complex parametrization

bj~0,l![ f j~l!eiv j (l) ~27!

with Im@ f j (l)#5Im@v j (l)#50, and using the fact thatl2

PR even for the discrete pointslk, j5 imk, j gives

f j~l!5Pf j~2l!, ~28!

v j~l!52b jl
21

u j

2
1

p

4
~P11! ~modp!. ~29!

Absorbing the modp factor in the unknownf j (l), bj (zj ,l)
is seen to be parabolically chirped according to

bj~zj ,l!5 f j~l!ei $b j (2zj 21)l21u j /21(p/4)(P11)%. ~30!

B. Direct scattering perturbation scheme

The parametrization~30!, together with the parity as
sumption, translates all the information about the quasic
jugate propagation scheme~24! onto the scattering data, an
the problem has now been reduced to finding which pha
u j and modulif j (l) also satisfy the boundary condition~23!.
It will now be shown that it is possible to treat this proble
in perturbation theory. The direct scattering transform is w
suited to such a task because infinitely iterating the inte
scattering problem~16b! and using Eq.~17b! yields the
power series

bj~zj ,l!5 (
n51

`

i 2n21s j
n21bj

(2n21)~zj ,2l!a j
2n21 , ~31!

where the following functionals ofu have been defined:

bj
(1)~zj ,l![E

2`

`

dte2 iltuj~zj ,t!, ~32a!

bj
(2n21)~zj ,l![ )

r 51

2n21 H E
2`

`

dtse
i (2)rltrJ

3 )
,51

2n22

$u~t,2t,11!% )
m51

n

$uj~zj ,t2m21!%

3 )
s51

n21

$uj* ~zj ,t2s!%, ~32b!

and whereu(x2y) is the unit step function

u~x2y![H 0 if x,y,

1 if x.y.
~33!

On the other hand, perturbation expansions for the mod
and phase ofbj (zj ,l) may be introduced in the form

f j~l!5 (
n50

`

f j
(n)~l!a j

n , ~34a!
03660
n-

es

ll
al

us

u j5 (
n50

`

u j
(n)a j

n , ~34b!

where the coefficientsf j
(n)(l) andu j

(n) are real. Substituting
these expansions in Eq.~30! then yields

bj~zj ,l!5ei $b j (2zj 21)l21(1/2)u j
(0)

1(p/4)(P11)% (
n50

`

cj
(n)~k!a j

n ,

~35!

where the expansion coefficients are given by

cj
(p)~l![ f j

(p)~l!

1 (
m50
p.1

p21

f j
(m)~l! (

n51

`
i n

2nn!
(

r 1 . . . r n51

( ,51
n r ,1m5p

`

)
,51

n

u j
(r ,) .

~36!

The proposed approach is to consider an unspecified
ûB(k) at the boundary and use Eq.~31! to construct its scat-
tering data in each fiber, up to orderN in a j . Imposing these
data to be of the quasiconjugate form~35! order by order will
then yield the conditions forûB(k) to exhibitNth order qua-
siperiodic behavior arounda j50.

This program is not too difficult to realize forl5kPR,
but there is a subtlety associated with the discrete spect
because the eigenvaluesmk, j depend ona j , and this implicit
dependence should also be considered before the expa
~31! is evaluated on the imaginary axis and employed in a
perturbation scheme. Unfortunately, this information is dif
cult to incorporate since there is no simple way of obtain
an expansion formk, j (a j ) without the exact analytica
knowledge of the boundary field. This problem will be sid
stepped by simply requiring the field to be purely radiativ
i.e., it is required thatL j5B. This is not as restrictive as i
may seem because the scaling depicted in Fig. 1 implies
coefficientsbj

(2n21)(zj ,2l) to be roughly of order one at th
boundary and so the validity of any low-order truncation
Eq. ~31! requiresa j!1, which is equivalent to

ub j9u@uguAB
2TB

2 . ~37!

On the other hand, there can be no discrete spectrum in
normal fiber and it can be shown@12# that a necessary an
sufficient condition for the absence of a discrete spectrum
any anomalous fiber is given by

E
2`

`

uuj~zj ,t!udt,
ln~21A3!

a j
. ~38!

Now our choice of scaling also implies this quadrature to
of order 1 at the boundary and ifa j is small, the bound
becomes large so that any field profile will be purely rad
tive in the perturbation regime~37!. Restricting the perturba
tive analysis to the real axis, the Fourier-transformed fiel
9-4



r-

or

ic
e
t

a-

th
no
o

of

fi-

ity
ish
s
lic

nd

DISPERSION MANAGEMENT AND THE DIRECT . . . PHYSICAL REVIEW E 69, 036609 ~2004!
û j~zj ,k![E
2`

`

dte2 iktuj~zj ,t!, ~39a!

and the integral representation for the unit step function

u~x2y!5E
2`

` dp

2pE0

`

dseip(x2y2s), ~40!

may be invoked to reduce the scattering coefficients~32! to
the form

bj
(1)~zj ,k!5û j~zj ,k!, ~41a!

bj
(2n21)~zj ,k!5 )

r 51

2n22 H E
0

`

dt rE
2`

` dpr

2p
ei (21)rtr prJ

3û j~zj ,p11k!)
,51

n21

$û j* ~zj ,p2,211p2,1k!%

3 )
m51
n.2

n22

$û j~zj ,p2m1p2m111k!%

3û j~zj ,p2n221k!. ~41b!

Equating the quasiconjugate condition~35! with the scatter-
ing expansion~31! at the junction then gives

(
n51

`

i 2n21s j
n21bB

(2n21)~2k!a j
2n21

5ei $(21) j 21b j k
21(1/2)u j

(0)
1(p/4)(P11)% (

n50

`

cj
(n)~k!a j

n ,

~42!

where the boundary coefficients are defined by

bB
(2n21)~2k![b1

(2n21)~1,2k!5b2
(2n21)~0,2k!. ~43!

C. Low-order perturbative analysis

Equation~42! is the starting point for the proposed pe
turbative analysis. At ordera j

0 , it implies f 1
(0)(k)5 f 2

(0)(k)
50. This result seems to imply that the only possibility f
linear quasiperiodicity is the trivial solutionûB(k)50, but it
is well known that any linear pulse profile is exactly period
for a zero-average dispersion map. This discrepancy is du
the fact that the scattering formalism is strictly not related
the NLS ata j50. Indeed, in order to obtain the NLS equ
tion from the compatibility condition~6!, one has to divide
the latter bya so the correspondence breaks down at
linear point and the zeroth-order constraint is actually
related to linear quasiperiodicity. Proceeding then to first
der, the conditions take the form

ibB
(1)~2k!5 f j

(1)~k!ei $(21) j 21b j k
21u j

(0)/21(p/4)(P11)%,
~44!
03660
to
o

e
t

r-

which are compatible only if

b152b2[b, ~45a!

u1
(0)5u2

(1)[u (0), ~45b!

f 1
(1)~k!5 f 2

(1)[ f (1)~k!. ~45c!

Now the direct scattering problem shows thatu (0) may be
arbitrarily shifted by simply gauging the global phase
ûB(k) so fixing this gauge according tou (0)52p/2(P
21), the specific form of the scattering transform coef
cients~41a! implies the junction field to be given by

ûB~k!5 f (1)S k

2Dei (b/4)k2
. ~46!

Compared to the linear case, first-order quasiperiodic
arounda j50 still requires the average dispersion to van
and still allows for an infinity of solutions, but it now single
out those junction profiles which have a specific parabo
chirp in Fourier-space. The result~46! may then be used to
explicitly separate the scattering coefficients into real a
imaginary parts according to

Re$bB
(2n21)~2k!%5cos~b,k2!I c

(2n21)~k!

1sin~b,k2!I s
(2n21)~k!, ~47a!

Im$bB
(2n21)~2k!%5sin~b,k2!I c

(2n21)~k!

2cos~b,k2!I s
(2n21)~k!, ~47b!

with the introduction of the quantities@18# I s
(1)(k)[0,

I s
(2n21)~k![22n22 )

r 51

2n22 H E
0

`

dt rE
2`

` dpr

2p
ei (21)rtr prJ

3sinS (
s51

2n23

~21!s112b,psps11D f (1)~p11k!

3 )
,51

2n23

$ f (1)~p,1p,111k!% f (1)~p2n221k!,

~48a!

and I c
(1)(k)[ f (1)(k),

I c
(2n21)~k![22n22 )

r 51

2n22 H E
0

`

dt rE
2`

` dpr

2p
ei (21)rtr prJ

3cosS (
s51

2n23

~21!s112b,psps11D f (1)~p11k!

3 )
,51

2n23

$ f (1)~p,1p,111k!% f (1)~p2n221k!.

~48b!
9-5
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Proceeding now to second order, the fact thatu j
(n) and

f j
(n)(k) are real can be invoked to obtainf j

(2)(k)5u j
(1)50.

Using this second-order result, the third-order equations m
be written as

2 ibB
(3)~2k!5s j S f j

(3)~k!1
i

2
u j

(2)f (1)~k! D ieibk2
, ~49!

and subtracting these in both fibers gives

s1f 1
(3)~k!5s2f 2

(3)~k![ f (3)~k!, ~50a!

s1u1
(2)5s2u2

(2)[u (2). ~50b!

Separating the third-order system~49! into real and imagi-
nary parts and substituting the results~47a! and ~47b! then
gives

@ f (3)~k!1I c
(3)~k!#sin~b,k2!5S I s

(3)~k!2
u (2)

2
f (1)~k! D

3cos~b,k2!, ~51a!

@ f (3)~k!1I c
(3)~k!#cos~b,k2!5S u (2)

2
f (1)~k!2I s

(3)~k! D
3sin~b,k2!, ~51b!

which are compatible only if

f (3)~k!52I c
(3)~k!, ~52!

I s
(3)~k!5

u (2)

2
f (1)~k!. ~53!

The second of these expressions represents a nontrivial
straint for the determination of the junction-field modul
f (1)(k/2) and the second-order phase shiftf (2)[u2

(2)

2u1
(2) . Indeed, since the nonlinearity in both fibers is t

same but the dispersions alternate in sign@see Eq.~45a!#, one
has s152s2 so that u (2) is actually given by u (2)

5(s2/2)f (2). In order to simplify this constraint, one ma
write I s

(3)(k) in the form

I s
(3)~k!54E

0

`

dsE
0

`

dtE
2`

` dp

2p
e22i tpG~s,k,p!, ~54!

where

G~s,k,p![E
2`

` dq

2p
e2isqH~k,p,q!, ~55!

H~k,p,q![sin~2bpq! f (1)~k1p! f (1)~k1p1q! f (1)~q1k!.
~56!

The integral overp can then obviously be bounded by
03660
y

n-

U E
2`

` dp

2p
e22i tpG~s,k,p!U<E

2`

` udpuudqu

~2p!2
u f (1)~k1p!u

3u f (1)~k1p1q!uu f (1)~q1k!u.

~57!

Now energy conservation in the anomalous fiber impl
ub(k)u<1 so f (1)(k) is known to be bounded. Assuming als
uB(t) to vanish faster than any algebraic function impli
f (1)(k) to be analytic on the real axis, and the right-hand s
of Eq. ~57! is thus seen to converge to some finite valu
Since this bound is also independent ofs andt, the left-hand
side is seen to be uniformly convergent with respect to th
variables. Interchanging then thet and p integrals and inte-
grating I s

(3)(k) over t gives

I s
(3)~k!54E

0

`

dsE
2`

` dp

2p H lim
t→`

e22i tp
G~s,k,p!

22ip

2
G~s,k,p!

22ip J . ~58!

Now sinceusin(2bqp)/pu can be bounded byu2bqu, one has

U E
2`

` dp

2p
e22i tp

G~s,k,p!

2ip U<2ubu E
2`

` udpuudqu

~2p!2
uqu

3u f (1)~k1p!uu f (1)~k1p1q!u

3u f (1)~q1k!u. ~59!

If f (1)(k) is now assumed to decay fast enough asuku→`, so
that the right-hand side of Eq.~59! is finite, its left-hand side
becomes uniformly convergent with respect tos and t. It is
thus possible to take the limit in the first term of Eq.~58!
outside thep integral and this term becomes proportional
a Fourier transform evaluated at infinity

lim
t→`

E
2`

`

dpe2 i (2t)p
G~s,k,p!

p
, ~60!

whereG(s,k,p)/p has already been shown to be integrab
by Eq. ~59!. Now the Riemann-Lebesgue lemma states t
the Fourier transform of any Riemann-integrable functi
vanishes at6`. This limit may thus be eliminated and ther
remains

I s
(3)~k!54E

0

`

dsE
2`

` dp

2pE2`

` dq

2p
e2isq

H~k,p,q!

2ip
. ~61!

A reasoning similar to that above then allows one to int
change thes and q integrals, integrate overs and use once
more the Riemann-Lebesgue lemma to yield

I s
(3)~k!5E

2`

` dpdq

~2p!2

sin~2bpq!

pq
f (1)~k1p!

3 f (1)~k1p1q! f (1)~q1k!. ~62!
9-6
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Using this simplification@19#, the integral constraint~53!
may finally be written as

s2

4
f (2)f (1)~k!5E

2`

` dpdq

~2p!2

sin~2bpq!

pq
f (1)~k1p!

3 f (1)~k1p1q! f (1)~q1k!. ~63!

This is exactly the quasiperiodicity condition arising fro
the zero-average dispersion DMNLS@8,9,14# and its numer-
ics have already been shown to support even and odd s
tions, whose power spectra exhibit respectively one and
exponential humps@9,15#.

It should be emphasized that in other perturbative mod
the physical interpretation of the DMNLS is not always
clear as in the present context. For example, in the reg
perturbative approach@8#, the unknown function satisfying
the DMNLS is found to be the field modulus at the fib
midpoint uû1(1/2,k)u, which may only be identified with
f (1)(k/2) if the field is assumed to propagate at order 1 ina j
between the fiber midpoint and the junction. This is clea
less precise than the presenta j

3 treatment. The multiscale
analysis also lacks some precision, since its solution to
DMNLS represents the asymptotic field envelope for a sl
z scale. In contrast, by lifting small scale assumptions on
fiber lengths and propagating the field exactly, the pres
procedure can identify the solution to the DMNLS very pr
cisely as the field modulus at the junction.

D. Higher-order perturbative analysis

Ablowitz et al. have also succeeded in deriving th
higher-order DMNLS~HODMNLS!, a higher-order correc
tion to Eq.~63! that describes DM solitons with a large num
ber of humps@16#. In order to compare the present formul
tion with this correction, let us proceed to order 4, where i
seen thatf j

(4)(k)5u j
(3)50. This and the previous lower

order results then allow one to write the fifth-order co
straints

bB
(5)~2k!5H f j

(5)~k!1
i

2
u j

(2)f j
(3)~k!

1S i

2
u j

(4)2
u j

(2)u j
(2)

8 D f (1)~k!J eibk2
. ~64!

Substituting now f j
(3)(k)52s j I c

(3)(k), u j
(2)5s ju

(2) and
subtracting these equations in both fibers gives

f 1
(5)~k!5 f 2

(5)~k![ f (5)~k!, ~65a!

u1
(4)5u2

(4)[u (4). ~65b!

In terms of these quantities and Eqs.~47a! and ~47b!, the
fifth-order system separates into real and imaginary parts
cording to
03660
lu-
o

s,

ar

y

e

e
nt
-

s

-

c-

cos~bk2!S f (5)~k!2
u (2)u (2)

8
f (1)~k!2I c

(5)~k! D
5sin~bk2!S I s

(5)~k!2
u (2)

2
I c

(3)~k!1
u (4)

2
f (1)~k! D ,

~66a!

sin~bk2!S f (5)~k!2
u (2)u (2)

8
f (1)~k!2I c

(5)~k! D
52cos~bk2!S I s

(5)~k!2
u (2)

2
I c

(3)~k!1
u (4)

2
f (1)~k! D ,

~66b!

which are compatible provided that

f (5)~k!5I c
(5)~k!1

u (2)u (2)

8
f (1)~k!, ~67!

I s
(5)~k!2

u (2)

2
I c

(3)~k!52
u (4)

2
f (1)~k!. ~68!

It is also trivial to see that at order 6,f j
(6)(k)5u j

(5)50 so that
any functionf (1)(k) satisfying simultaneously Eqs.~63! and
~68! would represent a solution that is quasiperiodic up
order 6. However, since Eq.~68! does not have the form of a
correction but represents a whole new constraint, the e
tence of such high-order solutions is rather unlikely. No
also that higher-order DM solitons obtained through the m
tiple scales analysis not only depend on the scaled disper
b, but also on the explicit ratio of,1 to ,2. Since Eq.~68!
only depends on the dispersion, it is necessarily differ
from the HODMNLS and therefore does not describe high
order solitons. This lack of concordance at high orders is
be expected since the two approaches are not equivalen
multiple scales analysis requiring a robustness of its so
tions with respect to perturbations of the small map per
,11,2, whereas the present perturbation parameter isa j .

IV. CONCLUSION

An approach to the study of dispersion management
been presented, where the field is exactly propagated and
quasiperiodicity property is approximated in perturbati
theory. This approach actually hunts down those solution
the linear DM problem which remain quasiperiodic when t
nonlinearity is turned on and varied up to order 4. The
robust quasiperiodic fields have been shown to corresp
with the solutions of the lowest-order DMNLS, to be pure
radiative, and to exist only for zero-average dispersion ma
However, it is well known that quasiperiodic fields also ex
in the case of nonzero residual dispersion@17#. These solu-
9-7
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tions were excluded from the present formalism because
are simply not valid in any neighborhood ofa j50. In order
to treat these cases, the perturbation procedure shoul
modified so that quasiperiodicity conditions are not impos
at each order but only at some finite pointa j , or in the
neighborhood of such a point that excludesa j50. Such a
modification should also provide the link with Ablowitz
HODMNLS correction@16#.
o
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d
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